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A collection of spherical particles subjected to horizontal oscillatory fluid flow is known to form chains
perpendicular to the direction of the oscillation. We have developed computer simulations to model such a
system and have validated them against experiments carried out in a small fluid-filled cell. In both experiment
and simulation we find that the particles go through the same stages of evolution from a dispersed initial
configuration to an ordered chain structure. We then use our computer simulations to investigate in detail the
interactions responsible for chain formation and the interaction between fully formed chains.
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I. INTRODUCTION

In the last few years, there has been a lot of interest in
pattern formation involving granular materials �1�. For ex-
ample, dry granular beds under vibration have been found to
form surface patterns �2� or stripes �3�. Grains, which are
fully immersed in a fluid, exhibit a richer pattern-forming
behavior due to the interaction between the particles and the
fluid �4–7�. Related ordering phenomena have recently been
observed for bubbles in an oscillated fluid �8�.

Wunenburger et al. �9� performed experiments in which a
water-filled cell containing bronze particles was subjected to
horizontal sinusoidal vibration. They observed the formation
of periodic chains of particles, aligned perpendicular to the
direction of oscillation, and suggested that the interaction
between particles seems to arise from the steady streaming
flow �10� induced by the vibration. In another experiment,
Voth et al. �11� found that spherical particles formed regular
lattices under vertical vibration in a viscous fluid. They
showed that a model based on steady streaming can be used
to explain the attractive part of the interaction leading to the
formation of the pattern.

In order to investigate the interaction further, Klotsa et al.
�12� studied a simpler system consisting of two spheres in a
fluid-filled cell under horizontal vibration. The pair was
found to align perpendicular to the direction of oscillation
with the two spheres separated by a well-defined distance. It
was confirmed that the interaction between the two spheres is
related to the steady streaming flow.

In the present study we build on our earlier work by con-
sidering the interactions between many particles in a fluid
subjected to horizontal vibration. We investigate how these
interactions give rise to the formation of chains of spheres
using both experiments and simulations. The outline of the
paper is as follows. In Sec. II we describe the experimental
arrangement and in Sec. III we explain the simulation
method that we have used to model our experiments. In order
to understand the mechanism leading to chain formation we
need to study steady streaming flows in a confined geometry,
a topic which is introduced in Sec. IV. Section V describes
the formation and evolution of chains, comparing experi-
ments and simulations. Details of the chain-forming mecha-
nism from simulation are given in Sec. VI. We end with a
brief discussion of pattern formation in Sec. VII.

II. EXPERIMENTAL ARRANGEMENT

We conduct our experiments using spheres fully im-
mersed in a liquid contained in a small cell which is sub-
jected to horizontal vibration. Specifically, the cell was con-
structed in the following way. A rectangular hole was cut into
a 3-mm-thick rubber sheet which was sandwiched between
two glass plates, supported by an aluminum alloy frame. The
dimensions of the resulting liquid-tight region were 39.5 mm
long �x direction, horizontal�, 11.5 mm wide �y direction,
horizontal�, and 3 mm deep �z direction, vertical�. The liquid
and the spheres were placed in the cell before it was sealed.
The cell was mounted between two long-throw loudspeakers
so that the plane of the glass sheets �x-y plane� was accu-
rately horizontal during vibratory motion such that only one-
dimensional motion in the x direction occurred. The sinu-
soidal motion may be characterized by the frequency f and
by the dimensionless acceleration of the cell, �=A�2 /g,
which was determined using capacitative acceleration sen-
sors. Here A is the amplitude of the vibration, �=2�f is the
angular frequency, and g is the gravitational acceleration.

We used a solution of glycerol and water with kinematic
viscosity �=2.0�10−6 m2 s−1 at 22 °C. The laboratory and
cell were kept at this temperature to avoid changes in the
viscosity. The fluid density was 1060 kg m−3. The fluid was
pumped prior to the experiment so as to remove any dis-
solved air. The cell was then sealed so that no air was
trapped in it. The particles used were nonmagnetic, stainless-
steel spheres, 1 mm in diameter and of density 7950 kg m−3.
A high-speed camera �up to 1000 frames/s� was mounted
directly above the cell so that the motion of the spheres could
be displayed on a monitor and recorded.

Because the liquid is nearly incompressible it moves with
the cell. The spheres, being more dense than the fluid, ini-
tially rest on the base of the cell. Under vibration the spheres
will be influenced by fluid drag forces and by the frictional
interaction with the base. Since the steel spheres and the
liquid have different densities, there is a relative amplitude of
motion of the spheres with respect to the liquid, Ar, which is
smaller than the driving amplitude A. All the experiments
reported here were carried out at f =50 Hz and with �=6.5.
The corresponding relative amplitude Ar was measured to be
0.5�0.05 mm, whereas the driving amplitude was A
=0.65 mm. We observed that, under vibration, there is hardly
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any rotation of the spheres, implying that they slip on the
lower glass surface for most of the oscillation cycle �9,12�.

III. SIMULATION METHOD

The fluid and the spheres were modeled using a simplified
version of the method developed by Kalthoff et al. �13�. The
fluid was assumed to be incompressible and described by the
three-dimensional Navier-Stokes’ equation and the continuity
equation

�v

�t
+ �v · ��v = −

1

�
� P + ��2v − g , �1�

� · v = 0. �2�

Here v is the fluid velocity, P is the fluid pressure, � is the
fluid density, and g is the acceleration due to gravity, along
the vertical axis �z�. These equations are discretized on a
staggered marker-and-cell mesh �14� and solved using the
projection method �15�. The incompressibility constraint is
satisfied via an explicit operator-splitting technique, de-
scribed in detail in Ref. �16�. This results in Poisson’s equa-
tion for the pressure, which is readily solved numerically
using Fourier techniques.

The spheres were treated as objects fully immersed in the
fluid. The fluid-solid coupling was introduced by enforcing
the no-slip boundary condition on the surface of the spheres.
This was achieved numerically by assuming that the fluid
permeates the spheres and that the fluid inside each sphere
moves with the instantaneous velocity of the sphere. At each
time step, the spheres’ velocities were transferred to the fluid
at the sites occupied by the spheres. The fluid subsequently
evolved according to the Navier-Stokes’ equation, ensuring
that the continuity equation was satisfied. The force on each
sphere, Fs, was then calculated from

Fs = �
i

�− �P + ���2v� , �3�

where the sum was taken over all sites occupied by the
sphere. The derivatives in Eq. �3�. were calculated using
finite-difference approximations. This force was then used to
update the sphere’s position using molecular dynamics tech-
niques �17�. Collisions between particles, when present, were
modeled using soft-sphere molecular dynamics �18�.

Under vibration the spheres slide on the lower surface of
the cell. To avoid the complications associated with lubrica-
tion forces, the spheres were prevented from reaching the
lowest cells of the fluid grid by a contact force which con-
strained them to be at least one lattice spacing above the true
cell boundary. Nor did we include the frictional interaction
between the spheres and the surface, which is known to be
complex �9�. However, the ratio of frictional forces to the
oscillatory drag forces is estimated to be quite small, of order
0.1 or less �19�.

The simulations were carried out using a time step 	t
=10−6 s and a grid spacing 	x=7.5�10−5 m. In some of the
simulations, we used a rectangular slab with dimensions
39.5�11.5�3 mm3, as in experiments. In the rest we used a

square box with dimensions 30�30�3 mm3 so as to study
interactions between particles or chains which are far from
walls.

Two types of simulation have been performed. In one, the
system was chosen to model the experimental arrangement
as closely as possible. The box and the fluid were oscillated
and the spheres were free to respond to the oscillation. The
driving amplitude A=g� /�2 was tuned so that the relative
amplitude of the spheres with respect to the fluid was the
same as in the experiment, Ar=0.5 mm. In the other type of
simulation, the spheres were fixed at some constant relative
position and were both oscillated sinusoidally with relative
amplitude Ar=0.5 mm with respect to the fluid. Here, the
fluid flow was generated by the motion of the spheres. Once
a steady state had been reached �that is, the fluid velocities
oscillated periodically at the driving frequency� the time-
averaged forces on the spheres and the corresponding fluid
flows could be determined.

IV. STEADY STREAMING

The concept of steady streaming around a single isolated
oscillating sphere in an infinite fluid has been studied ana-
lytically and numerically �20–25�. The parameters that gov-
ern such a system are the viscosity �, frequency f , sphere
diameter d, and relative amplitude Ar. Consequently there are
three independent length scales, Ar, d, and the viscous pen-
etration depth 
=�� /�. In our experiments and simulations,
Ar=0.5 mm, d=1 mm, and 
=0.08 mm. There have been a
variety of studies of steady streaming over different regions
in this parameter space, as summarized in �21�.

Figure 1 shows a schematic diagram of the time-averaged
fluid flow around a single, oscillating sphere in an infinite
liquid. The diagram shows the flows in a plane through the
center of the sphere. The sphere oscillates along the x axis in
this plane, as shown by the dashed line. The solid lines are
representative streamlines for the steady streaming flow. In
this plane there are eight vortices, four inner �primary

FIG. 1. Schematic diagram showing the streaming flow for a
single oscillating sphere, in the plane through the sphere. The
double-arrowed line on the sphere indicates the direction of oscil-
lation. There is rotational symmetry about the axis of oscillation �x�,
indicated by the dashed line. There are four vortex rings: two on the
left and two on the right of the sphere. The crosses indicate stagna-
tion points and � ,�� and � ,�� label the two outer vortex rings.
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streaming� and four outer �secondary streaming�. In three
dimensions there is rotational symmetry about the x axis and
the eight vortices shown in Fig. 1 are cross sections through
four circular vortex rings, two inner and two outer. For ex-
ample, �-�� are cross sections through the same single outer
vortex ring. The sense of circulation of each vortex ring can
be inferred from the direction of the arrowheads on each
streamline. Note that the outer vortex rings have opposite
circulation to their nearer inner vortex ring.

In our system, however, the particles are moving in a
finite box, along the bottom surface. We have carried out
simulations in order to determine the influence of the confin-
ing geometry on the streaming flows. In Fig. 2 we show data
from simulations for a single oscillating sphere. The vector
plot of Fig. 2 is the time-averaged fluid flow over one cycle
of oscillation after a steady state has been reached, typically
after about 0.5 s. The vector plot shown is a slice taken in the
horizontal x-y plane at a height through the sphere’s center.
Only one quadrant is shown. The flow is similar in form to
the corresponding quadrant in Fig. 1.

The presence of the bottom surface breaks the full rota-
tional symmetry of the flow about the x axis. What remains
is approximately half of the flow generated by a single, iso-
lated sphere. Figure 3 shows a vector plot through the center
of the sphere in the x-z plane. It can be seen that the stream-
ing flow is similar to the flow that would have been gener-
ated in the half space z0, were the bottom surface not
present. The vortex rings �inner and outer� terminate on the
lower surface of the cell, forming open-ended vortex loops.
A similar change in the fluid flow due to the presence of a
surface has recently been observed experimentally �21�. Fig-
ure 4 is a schematic diagram of the flows shown in Fig. 3,
included here for clarity. Note that the flow is somewhat
squashed in the z direction due to the top surface of the cell.

V. EVOLUTION OF CHAINS

First we describe the experiments. Sixty-four spheres
were initially placed in the cell which was then mounted
onto the vibratory apparatus and manipulated so that the par-
ticles were widely dispersed. The cell was then vibrated at
f =50 Hz and �=6.5, giving Ar=0.5 mm. The subsequent
motion of the spheres was recorded on the high-speed cam-
era and replayed at a low frame-per-second rate so that the
process could be observed in detail.

In Fig. 5 we show a few snapshots which are characteris-
tic of the evolution of the pattern together with their corre-
sponding times. As soon as the vibration is switched on,
nearby particles align in pairs, the line joining their centers
tending to orient perpendicular to the direction of the oscil-
lation. A free particle moves so that it joins the nearest pair to
form a short chain. Similarly, a free pair joins another nearby
pair also forming a short chain. There is a tendency for par-
ticles and chains to attach to the long sides of the cell. Short
chains then evolve to form longer ones by attaching at the
ends of the nearest chain. Long chains form which span the
cell between the two long sides. The stages described so far
have occurred within the first 2 s of oscillation. Everything
that follows happens at a much slower rate as the system
evolves toward its final configuration �by about 10 s� in
which there are no free particles or free chains.
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FIG. 2. Vector plot taken from simulations, showing part of the
time-averaged fluid flow around a single oscillating sphere. The
sphere is oscillating in the x direction and the fluid flow in the x-y
plane passing through the center of the sphere is shown. The arrows
indicate the local direction of the streaming flow. For reasons of
clarity, the magnitude of the arrows is proportional to the product of
the local speed and the square of the distance from the origin.
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FIG. 3. Vector plot taken from simulations, showing part of the
time-averaged fluid flow around a single oscillating sphere. The
sphere is oscillating in the x direction and the fluid flow in the x-z
plane passing through the centre of the sphere is shown. The rota-
tional symmetry about the x axis is broken by the bottom surface.
The vortex rings have now become open-ended vortex loops termi-
nating on the base of the cell. For reasons of clarity, the magnitude
of the arrows is proportional to the product of the local speed and
the square of the distance from the mean position of the center of
the sphere.

FIG. 4. Schematic diagram showing the streaming flow in the
x-z plane through the center of the sphere. The double-arrowed line
on the sphere indicates the direction of oscillation. This diagram
should be compared to Fig. 3.
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The experiment has been repeated several times under the
same vibratory conditions but with different initial positions
of the spheres. Each time the exact positions of the spheres
in the final configuration are different. However, the time
scale for the evolution is always the same, and the system
goes through the same stages of evolution, outlined in the
previous paragraph and shown in Fig. 5, always resulting in
a more or less stable chain configuration.

The particles in Fig. 5 that form a chain appear to be in
contact. However, from previous studies �12� it is known that
two particles forming a pair have a well-defined gap between
them. Under the vibratory conditions considered here, the
gap is quite small.

We have carried out simulations using the same param-
eters and geometry as in the experiment. Even though the
initial positions of the particles were different from those in
the experiments, similar chain patterns formed over the same
time scale, as illustrated in Fig. 6. We observed the same
behavior as in the experiments. For example, by 0.4 s pairs
could be seen and chains have already started to form, by
2.0 s most chains were attached to the walls, and by 10.0 s
the system was more or less stable. Simulations with differ-
ent initial positions of particles led to different final chain
configurations but all went through similar stages of evolu-
tion.

Let us define a “full chain” to be one that is aligned per-
pendicular to the direction of vibration and has the correct
number of particles to just span the cell. In both experiments
and simulations, we notice that once a full chain has formed,
it is stable. However, in some cases chains may merge, giv-
ing an excess of particles compared to a full chain, as in Fig.
5 at 1.0 s. The extra particle then acts as a defect which
moves up and down the chain. Eventually a particle may
leave the chain. The freed particle can then join a neighbor-
ing chain, or go to the nearest wall. In other cases two in-

FIG. 5. Series of snapshots, taken from experiment, showing the
evolution of 64 spheres from an initial dispersed configuration at
t=0, to an ordered state after 10.0 s, under horizontal vibration. By
0.1 s, the nearest spheres have interacted with each other; pairs
have started to form, aligning perpendicular to the direction of os-
cillation. Between 0.1 and 0.4 s, short chains form; there is also a
tendency for particles and chains to attach to the side walls. Be-
tween 0.4 and 1.0 s, short chains evolve to form longer ones by
attaching at the ends of the nearest chain; or they attach to the
sidewalls; any free particles move toward the sidewalls or attach at
the ends of the nearest chain. After 2.0 s, most particles are either
part of a chain or attached to the wall; there are no free particles.
Thereafter the arrangement appears to be more or less stable.

FIG. 6. Series of snapshots taken from a simulation of the ex-
perimental system shown in Fig. 5. The particles go through the
same stages of evolution, even though the initial positions and the
final stable configuration differ. The time scales for the evolution
are also comparable.
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complete chains align attached to opposite walls; this looks
like a chain with some particles missing. Examples can be
seen in Fig. 5 from 2.0 s and in Fig. 6 from 1.0 s. Because
the system tries to produce full chains, the free end of an
incomplete chain attracts free particles or the free ends of
other incomplete chains in its proximity.

The chain configuration is formed in the first few seconds.
There may be an occasional random particle that bounces off
an end wall or jumps from one chain to another. That apart,
the configuration remains stable over the duration of our ex-
periments, typically of the order of minutes.

The similarities between experiment and simulation are
evident from Figs. 5 and 6. We are therefore reasonably con-
fident that we can use the same computational model to
study the system in more depth. In order to understand the
details involved in the formation of chains, we have investi-
gated each step of their development separately, so as to
build up a picture which explains the evolution towards a
stable configuration. In the following sections we will use
simulations to investigate the stages of the evolution: the
interaction of a single sphere with a side wall, and the align-
ment of two spheres; the formation of short chains, and how
they interact to produce a long one; the evolution of full
chains which span the cell, and the interaction between
neighboring full chains.

VI. DETAILS OF CHAIN FORMATION

A. Interaction with the sidewall

A single particle is attracted to a neighboring wall, an
effect that is seen in both experiment and simulation. The
particle-wall interaction has been studied for a single particle
�26–28� and a long-ranged attractive and a short-ranged re-
pulsive force are found for viscous flows �29�. For our sys-
tem the force acting on a single particle at various distances
from a sidewall is shown in Fig. 7. It is attractive at large
separations and repulsive at short. The distance at which the
force is zero gives the equilibrium separation of the particle
from the wall.

B. Two-sphere alignment

When two particles are oscillated in a fluid the pair aligns
perpendicular to the direction of oscillation, an effect which
has been predicted theoretically for inviscid flows �28�, and
observed experimentally in viscous flows �9,11,12�. How-
ever, the mechanism responsible for the alignment of the pair
has not been studied in detail.

In order to estimate the interaction force, we shake two
particles A and B in a fluid, while keeping their relative
orientation and spacing constant. More specifically, particle
A is placed in the center of a square box and one grid point
above the bottom surface of the box. Particle B is then placed
at some position relative to A in the same plane, as shown in
Fig. 8. The fluid is initially at rest. The two spheres are then
oscillated with the same amplitude in the x direction, keeping
their relative position fixed. The time-averaged force on par-
ticle B is measured. The position of particle B is then varied
and the process is repeated. In this way we obtain a vector
plot showing the force on particle B at various orientations
with respect to particle A. Figure 8 shows a vector plot of
this force. The length of the arrows gives a measure of the
strength of the force.

By studying Fig. 8 we see that there is one stable position
for particle B, which is indicated by point C. �We are only
showing a portion of the upper half of the space; there is
another stable point in the lower half, below particle A.� We
remind the reader that in these simulations the particles are
locked in position relative to each other, whereas in experi-
ment they are free to move. The bold-arrowed line in Fig. 8
shows the path followed by B, relative to the position of A, in
simulations in which the fluid is oscillated and both particles
are free to move. This path does not exactly follow the di-
rection of the calculated forces for two reasons: there is a
time scale over which the streaming flow is set up, and the
moving particles have inertia. Nevertheless, the forces give a
reasonable indication of the relative motion of the particles
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FIG. 7. Interaction force Fy on a single sphere oscillating paral-
lel to a nearby wall. The graph shows Fy plotted as a function of the
separation of the nearest surface of the sphere to the wall, s. A
positive force indicates an attraction.
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FIG. 8. Vector plot of the effective force acting at the center of
particle B placed near particle A. The stable point occurs at C where
the force is zero. When particle B is at point C, the gap between the
particles is about 0.1 mm. The length of the largest arrow in the
figure corresponds to a force of magnitude 2.6 �N. The bold-
arrowed line from B to C shows the trajectory followed by B, rela-
tive to A, were it free to move. The double arrow at A indicates the
direction of oscillation.
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and correctly predict the final configuration of a pair.
It has been proposed in �11� that the interaction between

spheres can be understood by considering the streaming flow
generated by a single, isolated sphere. If the two spheres are
far apart, each particle tends to follow the flow generated by
the other. This idea is consistent with our force calculation,
shown in Fig. 8. For large separations the forces and the
single particle streaming flow, shown in Fig. 2, are in the
same direction. However, when the two particles are close
together this simple picture breaks down. For example, at the
point x=1, y=1 in Fig. 8, the force points upward and to the
left, whereas the flow at the same point in Fig. 2 points
downward and to the right.

C. Two-sphere streaming flow

Figure 9�a� shows the streaming flow pattern generated by
two spheres in their equilibrium configuration. When the two
spheres are brought together, the outer streaming flow re-
sembles that generated by a single particle, but with an in-
creased magnitude. The two extra horizontal arrows illustrate
the increased flow emerging from the gap between the
spheres, in the plane of the spheres �12�. This flow is part of
the slightly elongated outer vortex loops, one on either side
of the pair. Note that there are only two outer vortex loops. It
is as if, as the spheres are brought together, the overlapping
streaming flows that have opposite circulation partially can-
cel, lowering the kinetic energy of the system. This is shown
schematically in Fig 9�b�. Once formed, a pair of spheres is a
very stable entity.

D. Formation of a short chain

Our simulations show that the outer streaming flow of a
pair of spheres closely resembles that of a single sphere.
Therefore, pairs of spheres will interact with other pairs in an
analogous fashion to the way single spheres interact, as il-
lustrated in Fig. 8. Consequently, pairs can join together to
form short chains. Similarly a pair and a single sphere will
interact in the same way.

Figure 9�c� shows the streaming flow for a four-sphere
chain in the plane of the spheres. There are only two outer
vortex loops, one on either side of the chain. Each vortex
loop is elongated in the direction parallel to the chain and
terminates on the bottom surface of the cell slightly beyond
the ends of the chain. The strength of the outer vortex loops
increases with the number of particles in a chain because it is
driven by more inner vortex loops. The outer streaming flow
pattern has the same structure as that of a single pair. The
process of chain interaction continues until the chain be-
comes full and spans the cell, or there are no more free
particles or chains in its vicinity.

As a further elaboration of our picture of chain formation
we have run simulations in which two four-particle chains
are free to move within an oscillated, fluid-filled cell. A se-
ries of snapshots are shown in Fig. 10. Initially, the two small
chains are placed almost parallel to each other in the x-y
plane, aligned perpendicular to the direction of oscillation.
Each chain remains intact and moves as if it were a single
object. The chains “slide” past each other in the y direction
and move slightly further apart. Eventually the nearest ends
of each chain attract each other and join together to form one
longer chain. This behavior is consistent with the streaming
flow for a short chain shown in Fig. 9�c�. The trajectory
followed by the chains is similar to that followed by two
spheres when forming a pair.

E. Full chains

The addition of particles to a chain continues and short
chains get longer. Subsequently the chain is attached to a
wall and as more particles attach to the free end, it can form

FIG. 9. Schematic diagrams showing the streaming flow in the
x-y plane for a pair of particles and for a four-particle chain. �a� The
pair has two outer vortex loops. Here and in subsequent schematic
diagrams, the gap between adjacent spheres has been exaggerated to
illustrate the inner streaming flow. �b� Two isolated spheres are
brought together along a line perpendicular to the direction of os-
cillation. Initially each particle has two outer vortex loops around it.
As the spheres approach each other, the vortex loops of opposite
circulation interfere leading to cancellation of the flow. The spheres
move toward one another, forming the pair shown in �a�. Similarly,
when two pairs of spheres approach, they form a short chain, as
shown in �c�. In each case, the vortex loops are elongated parallel to
the chain. Provided these chains do not reach the sidewalls, these
vortex loops terminate on the bottom surface of the cell. The
double-arrowed line on each sphere indicates the direction of
oscillation.
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a full chain which spans the width of the cell. In both simu-
lation and experiment these full chains are stable. The
streaming flow for a full chain, in a plane through the center
of the spheres, is shown in Fig. 11. In this plane the outer
streaming flow is directed away from the chain. The return
path lies above the spheres; there is no return flow in the

plane of the spheres. The ends of the outer vortex loop ter-
minate on the sidewalls instead of on the bottom surface of
the cell, forming a vortex line which spans the cell.

F. Interactions between full chains

So far we have focused on the interactions between par-
ticles that lead to the formation of full chains. From studying
Figs. 5 and 6, one might suppose that there is also an inter-
action between full chains, possibly leading to a well-defined
spacing. In order to understand the interaction between full
chains we have carried out simulations starting with two full
chains separated by 2.0 mm, a separation which is small
compared to the steady state separation shown in Fig. 6 at
10.0 s. The cell is oscillated and the particles are free to
move in response to the oscillation. We observe that the
chains remain intact but drift apart. Their mean separation as
a function of time is shown in Fig. 12. The separation be-
tween the chains increases with time, which suggests that the
interaction between chains is solely repulsive.

FIG. 10. Sequence of snapshots from a simulation showing the
formation of a single chain from two shorter chains. The times are
�a� 0, �b� 0.2, �c� 0.3, �d� 0.5, �e� 1.4, and �f� 1.7 s. Each frame
shows a small part of the simulated area.

FIG. 11. Schematic diagram showing the streaming flow in an
x-y plane through the centers of the spheres for a full chain which
spans the cell—we have shown only five spheres for clarity. The
vortex loops are parallel to the chain and end at the walls rather
than on the bottom surface as they did in Fig. 8�c�. The double-
arrowed line on each sphere indicates the direction of oscillation.
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FIG. 12. Mean separation between two full chains as a function
of time. The points are from simulations and the line is the theoret-
ical fit discussed in the text.
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FIG. 13. Time-averaged repulsive force between two full chains
as a function of their separation. The solid line shows the
asymptotic dependence of the force, as discussed in the text. The
dashed line is a guide to the eye.
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The repulsive interaction that we observe may be traced
to the streaming flow generated by a single full chain, illus-
trated in Fig. 11. In the plane of the spheres, the flow is
always away from the chain; there is no return flow in this
plane. It is the flow away from the spheres which tends to
push the chains apart.

Further evidence for the existence of a repulsive force due
to streaming flows can be obtained by measuring the time-
averaged force between chains that are held at a fixed sepa-
ration. This method is analogous to the force measurement
between two single spheres described in Sec. VI B. The
mean force on each chain, Fx, is shown in Fig. 13. The force
is always repulsive but decreases rapidly with separation D.
The solid line is an approximate asymptotic fit showing that
Fx�D−6.

The calculation of the time-averaged force assumes that
the relative position of the chains is fixed. If the motion of
the chains is sufficiently slow, we can use this force to de-
termine their motion. In this limit, the acceleration of the
chains is small so that we can ignore inertial effects. The
separation D obeys an overdamped equation of motion,
�dD /dt=2Fx, where Fx is the time-averaged force shown in
Fig. 13 and � is an effective drag coefficient. Since we ex-
pect this approximation to be valid only for large separations,
we have used the asymptotic form Fx=1300D−6 �N, where
D is in millimeters. By solving the differential equation we
can fit the predicted separation to the data and estimate the
effective drag force on each chain. The calculated separation
is shown as the line on Fig. 12, which is in very good agree-
ment with the simulated motion for times greater than 5 s,
where the velocity and acceleration are small. The corre-
sponding value of � is 6�10−4 N m−1 s. If a chain in a semi-
infinite fluid were to be approximated by a cylinder of the
same length as the chain, � would be 1�10−4 N m−1 s �30�.
The reasonable agreement between these numbers gives fur-
ther support to the hypothesis that the repulsive force is due
to streaming flows.

VII. COMMENTS ON PATTERN FORMATION

We have described in detail the evolution of the system
from a collection of single particles to a configuration of
stable chains. From Figs. 5 and 6 it appears that there is a
well-defined separation of chains in the final state of the
system. The simplest explanation for a periodic pattern
would be the existence of a long-range attraction between
chains and a short-range repulsion. However, in our simula-
tions we were unable to identify an attraction between full
chains.

An alternative explanation of the spacing between chains
in our simulations comes from the fact that individual chain
formation is a local ordering phenomenon: each chain is

formed from particles in its immediate vicinity. If the initial
distribution is on the average spatially homogeneous then the
resulting chain structure will appear to be periodic, as in Fig.
6. On longer time scales, we have shown that two full chains
repel each other weakly. However, for a large number of
particles in a finite box, the full chains that form uniformly in
the cell are unable to drift further apart because of the pres-
ence of the end walls. Consequently, the pattern will remain
stable.

We have also carried out some simulations in which the
spheres start clustered in the centre of the cell. Full chains
rapidly form and subsequently spread out throughout the
whole cell due to the weak repulsive interaction. The final
configuration is close to that obtained starting from a fully
dispersed distribution of spheres. In both cases, the spatial
separation of chains is determined by the geometry of the
cell.

It should be noted that frictional forces with the base of
the cell have been neglected in our simulations. Provided the
forces between chains are large compared to the frictional
forces, this approximation can be justified. However, as the
pattern evolves the forces between chains decrease and there-
fore, at longer time scales the frictional forces may eventu-
ally be large enough to stop the pattern evolving further. A
detailed investigation of frictional effects for particles on a
surface in an oscillating fluid is a challenging problem �9�
and beyond the scope of this present study.

Chain formation has also been observed by Wunenburger
et al. �9�. In their experiments, smaller particles were used in
a much larger cell, with the particles always initially posi-
tioned as a clump in the center of the cell. Wunenburger et
al. noted that the final separation of chains depended upon
the vibratory conditions. By varying the vibratory conditions
once a pattern had formed, the separation between chains
could be made to increase or decrease. This observation sug-
gested the existence of a long-range attraction between
chains, although a mechanism for this attraction is still un-
known. Our simulations have shown that particles are at-
tracted to the free ends of chains due to the return streaming
flows in the plane of the chains. In a large cell, provided the
chains are far from the sidewalls, their free ends could attract
neighboring chains, holding the pattern together. This may be
an explanation for the attraction observed by Wunenburger et
al. It would be interesting to investigate this possibility fur-
ther.
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